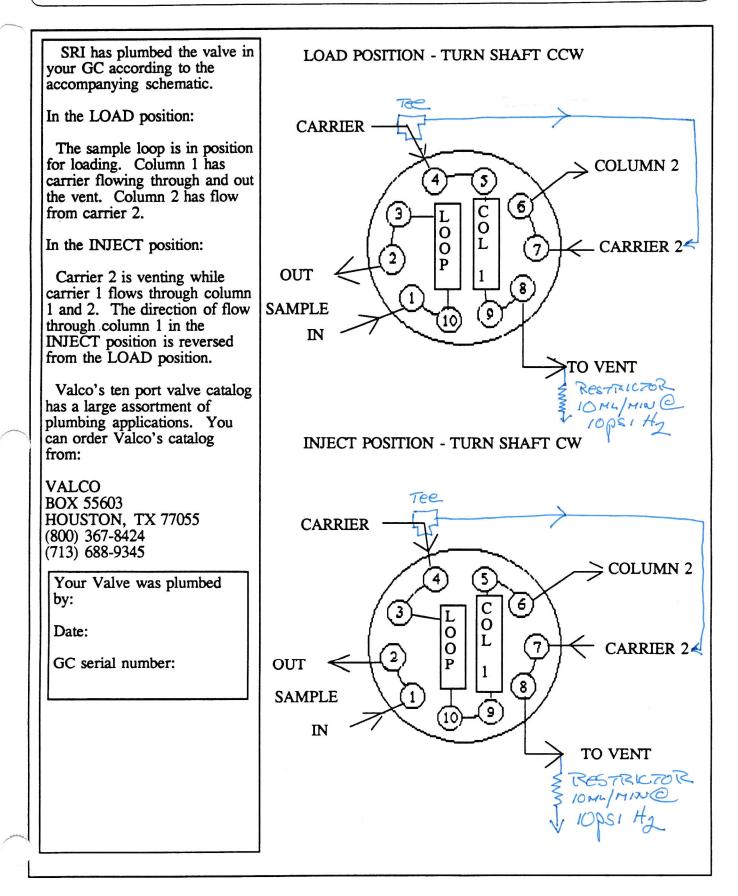
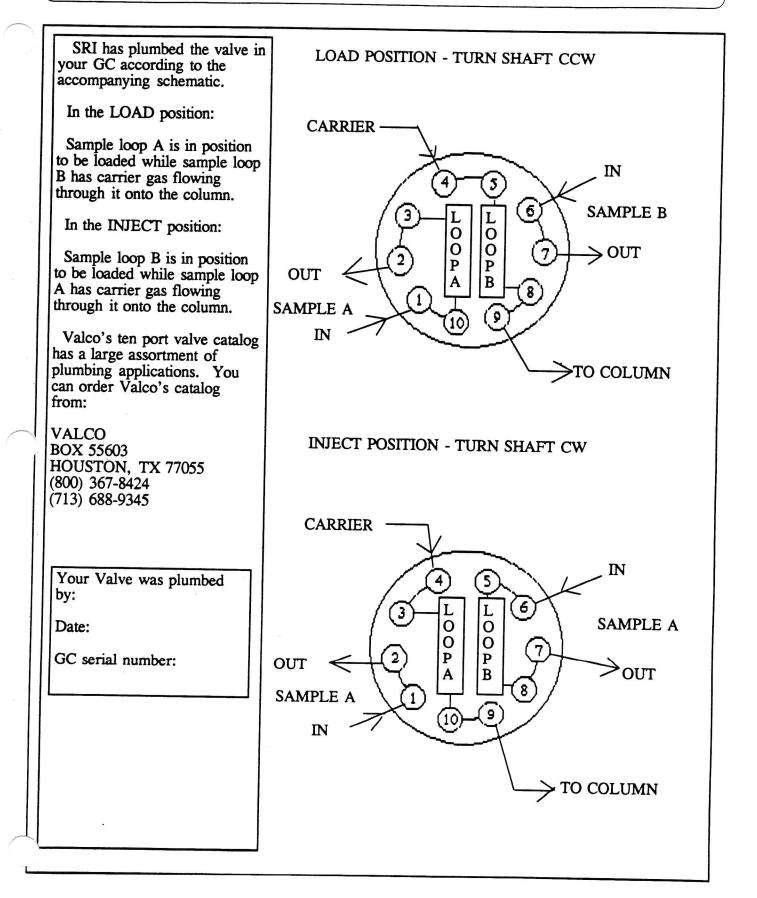
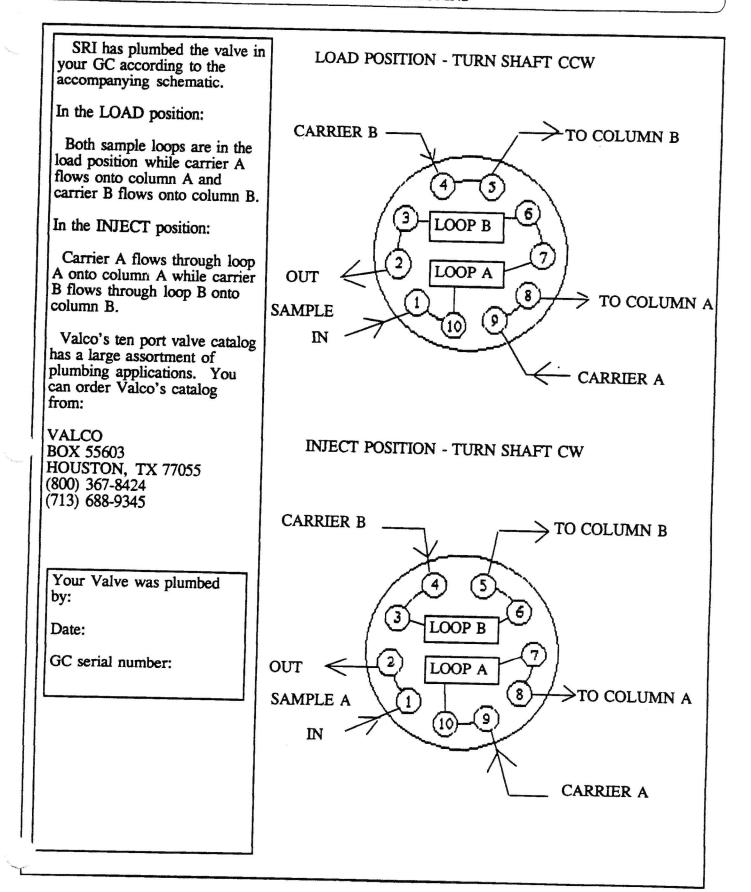
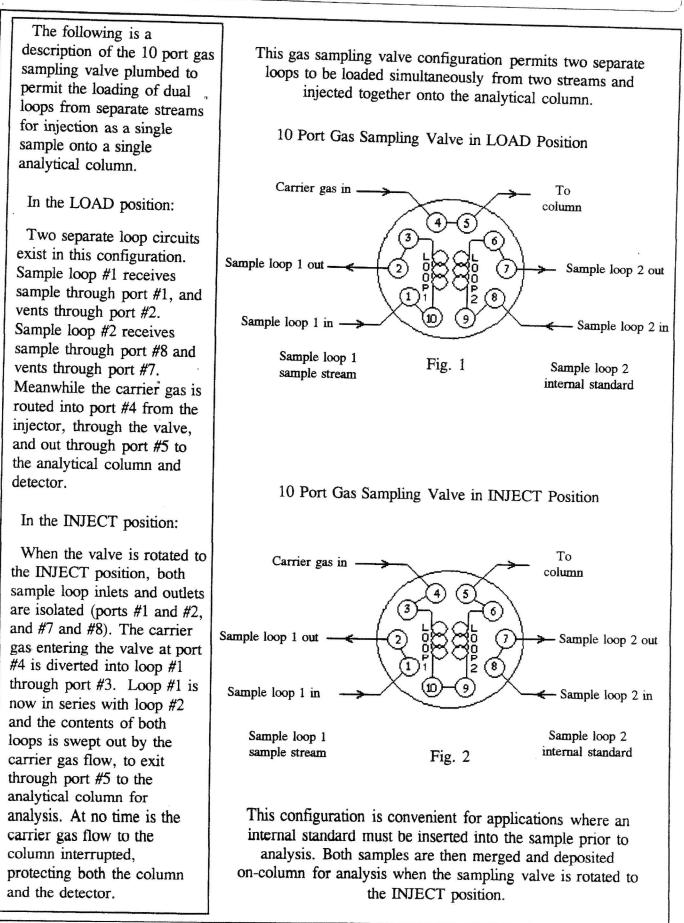

Chapter: INJECTORS & GAS VALVES


Topic: LOOP SAMPLING 6 PORT MODE

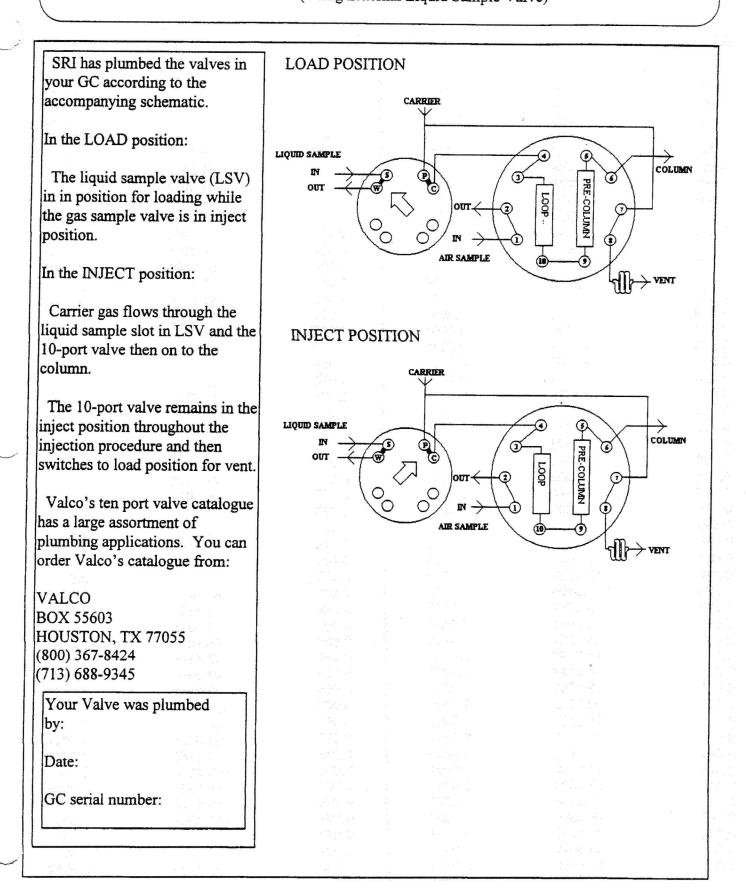

Chapter: INJECTORS & GAS VALVES Topic: LOOP SAMPLING WITH BACKFLUSH TO DETECTOR


Chapter: INJECTORS & GAS VALVES Topic: LOOP SAMPLING WITH BACKFLUSH OF PRE-COLUMN TO VENT

Chapter: INJECTORS & GAS VALVES Topic: ALTERNATE LOOP SAMPLING OF TWO DIFFERENT STREAMS



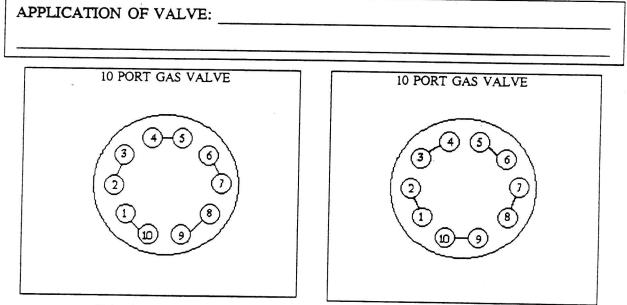
Chapter: INJECTORS & GAS VALVES Topic: SIMULTANEOUS INJECTION OF THE SAME SAMPLE INTO TWO SEPARATE COLUMNS



Chapter: INJECTORS & GAS VALVES

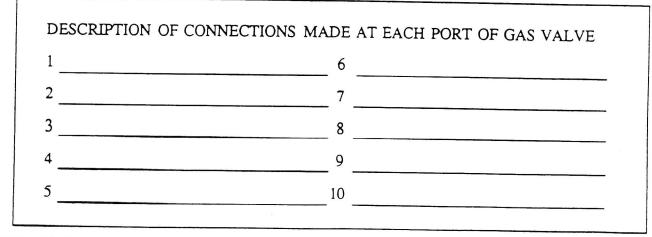
Topic: Dual Loop Injection of Two Separate Streams Onto One Column

Chapter:INJECTORS & VALVESTopic:Liquid and Loop Sampling with Backflush
of Pre-column to Vent (Using External Liquid Sample Valve)



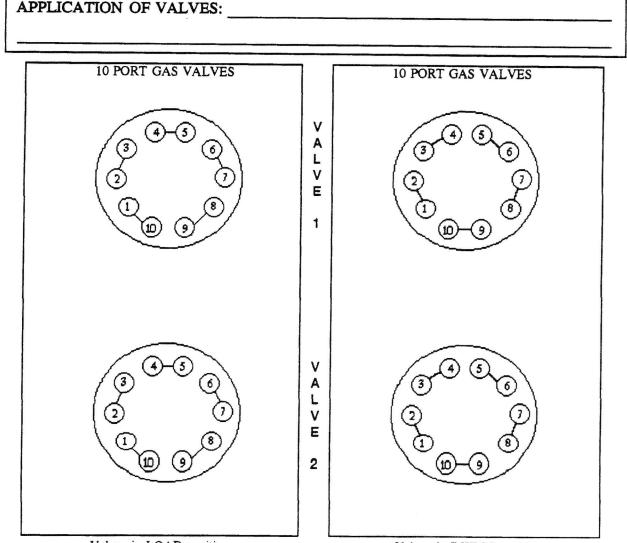
Chapter: CUSTOM MODIFICATIONS

Topic: Custom Valve Configuration Diagram


Most of the gas chromatographs manufactured by SRI that employ multi-port gas valves follow a standard gas line connection and flow path scheme that is specific to the user's application and/or dictated by the analytical test method. The majority of these gas valve schemes have been diagrammed and are included in the Injector and Gas Valves section of the unit's manual. The page header information will quickly identify the different application diagrams for the user's reference. In certain cases, the ten-port valve must be plumbed differently in order to perform a unique function as required by the user of the instrument. If manual entries have been made on this diagram page, the SRI gas chromatograph that accompanies this manual has been equipped with a ten port valve that has been custom-configured to the specifications of the user.

All custom plumbing of this ten-port valve will be documented on this page by the builder for the user's reference. Please note that there are TWO diagrams shown on this page. The first diagram represents the relationship between port connections and flow scheme when the valve is in the LOAD position (rotated counter-clockwise). The second diagram represents the relationship between port connections and flow scheme when the valve is in the INJECT position (rotated clockwise). These diagrams are applicable to both manually-operated valves and automated valves built into this chromatograph.

Valve in LOAD position


Valve in INJECT position

Topic: Custom Dual Valve Configuration Diagram

Most of the gas chromatographs manufactured by SRI that employ multi-port gas valves follow a standard gas line connection and flow path scheme that is specific to the user's application and/or dictated by the analytical test method. The majority of these gas valve schemes have been diagrammed and are included in this section of the unit's manual. The page header information will quickly identify the different application diagrams for the user's reference. In certain cases, the ten-port valve must be plumbed differently in order to perform a unique function as required by the user of the instrument. In some applications, dual valves are required and utilized. If manual entries have been made on this diagram page, the SRI gas chromatograph that accompanies this manual has been equipped with dual ten port valves that have been custom-configured to the specifications of the user.

All custom plumbing of these ten-port valves will be documented on this page by the builder for the user's reference. Please note that there are TWO diagrams shown on this page. The first diagram represents the relationship between port connections and flow scheme when the valves are in the LOAD position (rotated counter-clockwise). The second diagram represents the relationship between port connections and flow scheme when the valves are in the INJECT position (rotated clockwise). These diagrams apply to both manually-operated valves and automated valves built into this chromatograph.

Valves in LOAD position

Valves in INJECT position

TUBE VOLUME SELECTION GUIDE

INTERNAL DIAMETER	MICROLITERS PER INCH	INCHES PER MICROLITER	INTERNAL DIAMETER	MICROLITERS PER INCH	INCHES PEF
0.001	0.0129	77.6979	0.051	33.4757	0.0299
0.002	0.0515	19.4245	0.052	34.8014	0.0287
0.003	0.1158	8.6331	0.053	36.1527	0.0277
0.004	0.2059	4.8561	0.054	37.5299	0.0266
0.005	0.3218	3.1079	0.055	38.9327	0.0257
0.006	0.4633	2.1583	0.056	40.3613	0.0248
0.007	0.6306	1.5857	0.057	41.8157	0.0239
0.008	0.8237	1.2140	0.058	43.2958	0.0231
0.009	1.0425	0.9592	0.059	44.8016	0.0223
0.010	1.2870	0.7770	0.060	46.3332	0.0216
0.011	1.5573	0.6421	0.061	47.8905	0.0209
0.012	1.8533	0.5396	0.062	49.4735	0.0202
0.013	2.1751	0.4598	0.063	51.0822	0.0196
0.014	2.5226	0.3964	0.064	52.7167	0.0190
0.015	2.8958	0.3453	0.065	54.3770	0.0184
0.016	3.2948	0.3035	0.066	56.0630	0.0178
0.017	3.7195	0.2689	0.067	57.7747	0.0173
0.018	4.1700	0.2398	0.068	59.5122	0.0168
0.019	4.6462	0.2152	0.069	61.2754	0.0163
0.020	5.1481	0.1942	0.070	63.0643	0.0159
0.021	5.6758	0.1762	0.071	64.8790	0.0154
0.022	6.2292	0.1605	0.072	66.7195	0.0150
0.023	6.8084	0.1469	0.073	68.5856	0.0146
0.024	7.4133	0.1349	0.074	70.4775	0.0142
0.025	8.0440	0.1243	0.075	72.3952	0.0138
0.026	8.7003	0.1149	0.076	74.3386	0.0135
0.027	9.3825	0.1066	0.077	76.3077	0.0131
0.028	10.0903	0.0991	0.078	78.3026	0.0128
0.029	10.8239	0.0924	0.079	80.3232	0.0124
0.030	11.5833	0.0863	0.080	82.3696	0.0121
0.031	12.3684	0.0809	0.081	84.4417	0.0118
0.032	13.1792	0.0759	0.082	86.5395	0.0116
0.033	14.0158	0.0713	0.083	88.6631	0.0113
0.034	14.8781	0.0672	0.084	90.8124	0.0110
0.035	15.7662	0.0634	0.085	92.9875	0.0108
0.036	16.6799	0.0600	0.086	95.1882	0.0105
0.037	17.6195	0.0568	0.087	97.4148	0.0103
0.038	18.5847	0.0538	0.088	99.6670	0.0100
0.039	19.5758	0.0511	0.089	101.9450	0.0098
0.040	20.5925	0.0486	0.090	104.2488	0.0096
0.041	21.6350	0.0462	0.091	106.5783	0.0094
0.042	22.7032	0.0440	0.092	108.9335	0.0092
0.043	23.7972	0.0420	0.093	111.3145	0.0090
0.044	24.9169	0.0401	0.094	113.7212	0.0088
0.045	26.0624	0.0384	0.095	116.1537	0.0086
0.046	27.2336	0.0367	0.096	118.6119	0.0084
0.047	28.4306	0.0352	0.097	121.0958	0.0083
0.048	29.6532	0.0337	0.098	123.6055	0.0081
0.049	30.9017	0.0324	0.099	126.1409	0.0079
0.050	32.1758	0.0311	0.100	128.7020	0.0078
			l		